
 

Module 4: Semantic Analysis - Understanding Program 
Meaning 
Imagine you're building a robot. The first step (lexical analysis) is like teaching the robot to 
recognize individual sounds or words. The second step (syntax analysis/parsing) is like 
teaching it to understand if those words are put together in a grammatically correct sentence. 
But even a grammatically perfect sentence can be nonsensical ("The square circle ran 
quickly"). 

Semantic Analysis is the third crucial step. It's where the compiler tries to understand the 
meaning of your program. It asks questions like: "Does this operation make sense with these 
types of data?", "Did the programmer declare this variable before using it?", or "Is this 
function call using the right number and types of arguments?" If something doesn't make 
logical sense according to the rules of the programming language, the semantic analyzer 
finds it and reports an error. 

4.1 The Need for Semantic Analysis: Beyond Grammar 
The parser (syntax analysis) ensures that your program follows the grammatical rules of the 
language. For example, it checks if every if has a corresponding then (or else block), or if 
parentheses are matched correctly. However, syntax alone isn't enough to guarantee a 
runnable, correct program. Semantic analysis steps in to check the "logic" and "meaning" of 
your code. 

Why is it absolutely necessary? Let's break down the common types of semantic 
checks: 

1. Type Checking: Are You Mixing Apples and Oranges? 
○ What it is: This is the most common and fundamental semantic check. Every 

piece of data in a program has a "type" (like integer, floating-point number, 
text string, boolean true/false). Type checking makes sure that you're only 
performing operations that are sensible for those types. 

○ Analogy: You can add two numbers (e.g., 5 + 3). You can also combine two 
words to make a phrase ("hello" + "world"). But can you add a number and a 
word (e.g., 5 + "hello")? In most programming languages, no. That's a type 
error. 

○ Examples of what it catches: 
■ int age = "twenty"; (Trying to put text into a whole number variable.) 
■ bool isActive = 10 / 2; (Trying to put the result of a division, which is a 

number, into a true/false variable.) 
■ "apple" - "pie"; (Trying to subtract text strings, which is usually not 

allowed.) 
○ Why it's important: Catches common programming mistakes early, before 

your program even runs. This prevents frustrating "runtime errors" that are 
harder to debug. It also enforces the strictness (or flexibility) of a language's 
type system, making your code more predictable. 

2. Undeclared Variables and Functions: Have You Introduced Yourself? 



○ What it is: Before you use a variable or call a function in your program, you 
usually have to "declare" it. This tells the compiler what it is (e.g., "I'm going to 
use a variable called 'myCount' which will hold an integer"). Semantic analysis 
checks if every name you use has been properly introduced. 

○ Analogy: Imagine trying to talk about a person named "Zephyr" in a 
conversation without ever explaining who Zephyr is. Your listener would be 
confused. The compiler gets confused too! 

○ Examples of what it catches: 
■ myVariable = 10; (If myVariable was never declared with int 

myVariable; or similar.) 
■ calculateSum(a, b); (If calculateSum function was never defined.) 

○ Why it's important: Ensures that every name refers to a known entity, 
preventing typos or forgotten declarations from causing mysterious bugs. 

3. Ambiguous Overloading Resolution: Which One Did You Mean? 
○ What it is: Some programming languages allow "overloading." This means 

you can have multiple functions with the same name, as long as they take 
different types or numbers of inputs (parameters). Similarly, operators like + 
might do different things (add numbers, combine strings). Semantic analysis 
figures out which specific version of the function or operator you intend to use 
based on the context (the types of data you provide). 

○ Analogy: Imagine having a command "open." You might say "open the door" 
(meaning physically unlatch it) or "open the file" (meaning load it into 
memory). The word "open" is overloaded, and the context tells you which 
action is intended. 

○ Examples: 
■ You might have print(int num) and print(string text). If you call 

print(42);, the semantic analyzer knows to use the integer version. If 
you call print("Hello");, it picks the string version. 

■ a + b; could mean integer addition if a and b are integers, or 
floating-point addition if they are floats, or even string concatenation if 
they are strings. 

○ Why it's important: Makes the language more flexible and natural, allowing 
programmers to use intuitive names or symbols for related operations without 
ambiguity. The compiler handles the underlying complexity. 

4. Access Control (Scope Checking): Who's Allowed to See This? 
○ What it is: Programming languages have rules about where variables and 

functions can be seen and used. This is called "scope." A variable declared 
inside a function is usually only visible within that function (local scope). A 
variable declared outside all functions might be visible everywhere (global 
scope). Object-oriented languages also have access modifiers like "public" or 
"private." Semantic analysis enforces these visibility rules. 

○ Analogy: A secret message intended only for people inside a specific room. 
Someone outside that room shouldn't be able to read it. 

○ Examples of what it catches: 
■ Trying to use a variable x that was declared inside functionA from 

functionB. 
■ Trying to access a private member of a class directly from outside that 

class. 



○ Why it's important: Helps organize code, prevents unintended modifications 
of data, and supports modular programming practices like encapsulation. 

5. Return Type Checking: Did You Deliver What You Promised? 
○ What it is: When you define a function, you often state what type of value it 

will "return" (e.g., int calculate_sum(...) means it will give back an integer). 
Semantic analysis verifies that the function actually returns a value of that 
type, and that all possible paths through the function lead to a return 
statement (if a return value is expected). It also checks that functions 
declared as void (meaning they return nothing) don't try to return a value. 

○ Analogy: If you promise to bring back an apple from the store, you shouldn't 
come back with a banana, or nothing at all! 

○ Examples of what it catches: 
■ A function declared to return an int actually returns a string in some 

cases. 
■ A function declared void (no return value) has a return 5; statement. 

○ Why it's important: Ensures consistency and correctness in how functions 
interact, preventing subtle bugs that might only appear during specific 
execution paths. 

6. Control Flow Statement Validation: 
○ What it is: Keywords like break and continue are special. They alter the 

normal flow of execution within loops or switch statements. Semantic analysis 
ensures they are only used in valid contexts. 

○ Analogy: You can only "take a shortcut" or "skip ahead" if you're actually 
inside a race or a defined path. You can't just break out of thin air. 

○ Examples of what it catches: 
■ break; (if it's just floating in the code, not inside a for, while, or switch.) 

○ Why it's important: Prevents nonsensical jumps in program execution, 
ensuring the control flow logic is sound. 

The Indispensable Symbol Table: 

To perform all these checks, the semantic analyzer relies heavily on a data structure called 
the Symbol Table. Think of the symbol table as the compiler's central database for all the 
names (identifiers) used in your program. 

● What it stores: For each identifier, the symbol table keeps track of vital information 
discovered during earlier phases and updated by semantic analysis: 

○ Its name (e.g., "myVariable"). 
○ Its type (e.g., int, float, string, bool). 
○ Its scope (where in the program it's visible – global, local to a function, local 

to a block, etc.). 
○ What kind of entity it is (variable, function, array, class, constant). 
○ For functions: the number and types of its parameters, and its return type. 
○ Any other relevant properties (e.g., whether it's read-only, its memory address 

once allocated). 
● How it's used: 



○ When the semantic analyzer encounters an identifier, it looks it up in the 
symbol table to retrieve its stored information. 

○ If the identifier isn't found, it's an "undeclared" error. 
○ If it is found, the analyzer uses the type and scope information to perform 

checks (e.g., "Can I add an int to a string? No."). 
○ When new declarations are processed, the symbol table is updated with the 

new identifier's details. 

4.2 Abstract Syntax Trees (ASTs): The Meaningful Blueprint 
After the parser checks for grammatical correctness, it usually creates a Parse Tree (or 
concrete syntax tree). This tree is a very detailed representation of how the program 
matches the grammar rules, often including many keywords and intermediate grammatical 
steps that are not directly about the program's meaning. 

For semantic analysis and later stages, we need a simpler, more concise representation that 
focuses on the core structure and meaning. This is where the Abstract Syntax Tree (AST) 
comes in. 

What is an AST? Think of it as a blueprint: 

An AST is a simplified, cleaned-up version of the parse tree. It throws away all the "syntactic 
noise" (like extra parentheses, semicolons, or redundant keywords from the grammar) and 
focuses only on the essential elements that define the program's structure and operations. 

Key Characteristics that make ASTs perfect for Semantic Analysis: 

● Only Meaningful Elements: Each node in an AST represents a significant construct 
in the programming language – like an operation, a variable, a literal value, an 
assignment, a loop, or a function call. It doesn't have nodes for intermediate 
grammatical rules. 

● Hierarchical Relationship: The parent-child relationships in an AST show how 
different parts of the program relate to each other logically. For example, an 
"addition" node would have its two "operands" as children. 

● More Abstract, Less Concrete: It's "abstract" because it doesn't show the exact 
syntax used; it shows the idea of the operation. 

● Directly Usable: An AST is much easier to work with for semantic checks and code 
generation because you're dealing directly with concepts like "add," "assign," 
"if-then-else" rather than complex grammatical derivations. 

Let's visualize ASTs for common programming constructs: 

1. Expressions: Capturing Calculation Order 
○ Source Code: result = a + b * c; 
○ The Problem with a Parse Tree: A parse tree would show many 

intermediate steps for operator precedence (like Expression -> Term -> 
Factor). It would be bulky. 

○ AST for a + b * c: 



    + 
    / \ 
   a   * 
      / \ 
     b   c 

○  
■ Explanation: This AST immediately tells you that b is multiplied by c 

first, and then that result is added to a. The operators (+, *) become 
internal nodes, and the variables (a, b, c) become leaf nodes. This 
structure directly reflects the order of operations. 

2. Assignment Statements: Storing Values 
○ Source Code: total = initial_value + 10; 
○ AST: 

     = 
     / \ 
 total  + 
       / \ 
initial_value 10 

○  
■ Explanation: An assignment statement is typically represented by an 

assignment node (=), with two children: the variable on the left-hand 
side (where the value goes) and the expression on the right-hand side 
(the value itself). 

3. Control Flow Statements: Guiding Program Path 
○ If-Else Statement: Making Decisions 

■ Source Code: 

if (score > 90) { 
    grade = 'A'; 
} else { 
    grade = 'B'; 
} 

■  
■  
■ AST: 

      IfElse 
      /  |   \ 
     >   =    = 
    / \ / \  / \ 



 score 90 grade 'A' grade 'B' 
■  

■ Explanation: An IfElse node has three main branches: 
1. The condition (e.g., score > 90). 
2. The "then" part (the code to execute if the condition is 

true). 
3. The "else" part (the code to execute if the condition is 

false). 
■ Notice how the inner assignment statements also become 

subtrees. 
○ While Loop: Repeating Actions 

■ Source Code: 

while (count < 5) { 
    count = count + 1; 
} 

■  
■  
■ AST: 

     While 
     /     \ 
    <       = 
   / \     / \ 
count 5  count  + 
               / \ 
            count 1 

■  
■ Explanation: A While loop node has two main branches: 

1. The loop condition (e.g., count < 5). 
2. The loop body (the statements inside the loop). 

○ Function Call: 
■ Source Code: print_message("Hello", count); 
■ AST: 

  Call 
  /    \ 

■  
■  



○ print_message Arguments 
/ 
"Hello" count 
``` 
* Explanation: A Call node represents a function invocation. Its children 
typically include the function name and a list of its arguments. 

How ASTs are used in Semantic Analysis: 

The AST becomes the central data structure that the semantic analyzer traverses. 

1. Walk the Tree: Semantic analysis often involves one or more "walks" (traversals) of 
the AST, typically a depth-first traversal (visiting children before processing the 
parent, or vice versa, depending on the attribute type). 

2. Gather Information: As the analyzer visits each node, it gathers information. For 
example, when it visits an expression node, it might calculate and determine the type 
of that expression. 

3. Update Symbol Table: When it encounters a declaration node (like int x;), it adds x 
to the symbol table with its type (int) and scope information. When it encounters a 
usage of x, it looks it up in the symbol table to retrieve its type for type checking. 

4. Annotate AST Nodes: The computed attributes (like the type of an expression, or a 
pointer to its symbol table entry) are often stored directly on the AST nodes 
themselves. This enriches the AST, making it even more useful for later compilation 
stages. 

5. Detect Errors: If a semantic rule is violated (e.g., trying to add a string and an 
integer), the analyzer reports an error message, often pointing to the specific line or 
node in the source code. 

By creating and working with ASTs, the compiler moves from simply knowing how the code 
is written (syntax) to understanding what the code intends to do (meaning). 

4.3 Attribute Evaluation and Syntax-Directed Translation Schemes 
(STDS): The Rules of Meaning 
Now that we have the AST, how does the semantic analyzer actually do its work of checking 
meaning and gathering information? It uses a powerful concept called Attribute Evaluation, 
guided by rules defined in Syntax-Directed Translation Schemes (STDS). 

Attribute Evaluation: Attaching Information to Your Blueprint 

● What are Attributes? Think of attributes as sticky notes you attach to the nodes of 
your AST (or parse tree). Each sticky note holds a piece of information that is 
important for understanding the meaning of that part of the program. 

1. Example: For an expression node like a + b, you might attach an attribute 
called type that holds the resulting data type (e.g., int or float). For a variable 
node like x, you might attach an attribute called symbolTableEntry that points 
to its entry in the symbol table, where all its details (type, scope) are stored. 

● Two Flavors of Attributes (Information Flow): 



1. Synthesized Attributes (Information Flows UP the tree): 
■ Idea: The value of a synthesized attribute at a node is calculated from 

the attribute values of its children nodes. Information moves from the 
bottom of the tree upwards towards the root. 

■ Analogy: Imagine calculating the total cost of a shopping cart. You 
need the cost of each individual item (children nodes), and then you 
sum them up to get the total cost for the cart (parent node). The 
information (individual costs) is synthesized up to the total. 

■ Common Use Cases: 
■ Type of an expression: The type of a + b depends on the 

types of a and b. 
■ Value of a constant expression: The value of 5 * (2 + 3) is 

synthesized from the values of its sub-expressions. 
■ Size/offset of a data structure: The size of a record/struct is 

the sum of the sizes of its members. 
■ Evaluation Order: Typically evaluated using a post-order traversal 

(depth-first traversal where you process children first, then the parent). 
2. Inherited Attributes (Information Flows DOWN or ACROSS the tree): 

■ Idea: The value of an inherited attribute at a node is calculated from 
the attribute values of its parent node or its siblings. Information 
moves from the top down or horizontally. 

■ Analogy: Imagine a project manager (parent node) assigning a 
"deadline" (inherited attribute) to different tasks (child nodes). Or, a 
variable's declaration might tell its usage nodes what its type is. 

■ Common Use Cases: 
■ Expected type: An assignment statement x = expression; 

might pass the expected type of x down to the expression 
node so that the expression can be checked for type 
compatibility or implicitly converted. 

■ Scope information: A block of code ({ ... }) might pass down 
its scope context to declarations within it. 

■ Contextual information: Information from the left sibling might 
influence a right sibling (e.g., in a list of declarations, the type 
declared for the first variable might be inherited by the 
subsequent ones if not explicitly specified). 

■ Evaluation Order: Often evaluated using a pre-order traversal 
(depth-first traversal where you process the parent first, then its 
children). 

Syntax-Directed Translation Schemes (STDS): The Recipe for Attributes 

● Concept: An STDS is a formal way to specify how attributes are computed and how 
semantic actions are performed by associating them directly with the grammar rules 
(productions). It's essentially a set of "recipes" for how to build or decorate your AST 
based on the grammatical structure. 



● Structure: Each rule in an STDS looks like a grammar production with embedded 
"semantic actions" (blocks of code) that explain what to do when that rule is applied 
during parsing or tree traversal. 
A -> α { semantic_action } 

○ A -> α: This is a regular grammar production (e.g., Expression -> Expression 
+ Term). 

○ { semantic_action }: This is a piece of code (often written in the 
implementation language of the compiler, like C or Java) that gets executed 
when the parser recognizes this specific grammatical pattern. 

● What Semantic Actions Do: 
○ Attribute Calculation: The primary purpose. They read attribute values from 

children/parent/siblings and compute new attribute values for the current 
node. 

○ Symbol Table Operations: Add new entries to the symbol table for 
declarations, or look up entries for variable/function usage. 

○ Error Reporting: If a semantic rule is violated during attribute computation 
(e.g., type mismatch), the action reports an error. 

○ Intermediate Code Generation: While often a separate phase, sometimes 
simple intermediate code (like three-address code) can be generated during 
semantic analysis as attributes. 

Detailed Example: Type Checking an Addition with STDS 

Let's use a very simplified grammar and imagine how semantic rules would work. 

Grammar Rules: 

1. E -> E1 + T (An Expression is an Expression plus a Term) 
2. E -> T (An Expression can just be a Term) 
3. T -> num (A Term can be a number literal) 

Attributes: We want to compute a synthesized attribute type for each E and T node. 

STDS (Conceptual): 

// Rule 1: E -> E1 + T 
E.type = CheckAddType(E1.type, T.type); // CheckAddType is a helper function 
 
// Rule 2: E -> T 
E.type = T.type; 
 
// Rule 3: T -> num 
T.type = INT_TYPE; // Assume all number literals are integers for simplicity 
 

Now, let's trace x + y where x is int and y is float (assume x and y are simple numbers for 
this trace): 



AST: 

         E (result_type) 
         /|\ 
        E1 + T 
       /     \ 
      x       y 
 

Attribute Evaluation Trace (Post-order traversal for synthesized attributes): 

1. Visit x (leaf node): 
○ This node corresponds to T -> num. 
○ Action: T.type = INT_TYPE. So, x.type becomes INT_TYPE. 

2. Visit y (leaf node): 
○ This node corresponds to T -> num. 
○ Action: T.type = FLOAT_TYPE (let's assume y was identified as a float literal). 

So, y.type becomes FLOAT_TYPE. 
3. Visit + node (parent of x and y in the E1 + T production): 

○ This node represents the E -> E1 + T production. 
○ Action: E.type = CheckAddType(E1.type, T.type). 
○ Here, E1.type is x.type (INT_TYPE) and T.type is y.type (FLOAT_TYPE). 
○ CheckAddType(INT_TYPE, FLOAT_TYPE) would likely return FLOAT_TYPE 

(because integers are usually promoted to floats in mixed-type arithmetic to 
avoid losing precision). 

○ So, the type attribute of the top E node (representing x + y) becomes 
FLOAT_TYPE. 

What happens if there's a type error? 

If y was a STRING_TYPE in the above example: 

1. x.type = INT_TYPE. 
2. y.type = STRING_TYPE. 
3. When evaluating E.type for x + y: 

○ CheckAddType(INT_TYPE, STRING_TYPE) would detect an incompatible 
operation. 

○ It would then: 
■ Report an error message: "Error: Cannot add an integer and a string." 
■ Set E.type = ERROR_TYPE (a special type to propagate the error, 

preventing further meaningless checks on this expression). 

Tools that use STDS Concepts: 

Compiler-compiler tools like Yacc (Yet Another Compiler Compiler) or Bison (GNU 
version of Yacc), which are typically used for parser generation, also allow you to embed 
semantic actions directly into your grammar rules. This means that as the parser builds the 



AST, it can simultaneously execute these semantic actions to perform attribute evaluation 
and semantic checks. 

In summary, semantic analysis is a critical guardian of program correctness, ensuring that 
your code is not just grammatically sound but also logically meaningful. It leverages ASTs as 
its primary data structure and employs attribute evaluation and syntax-directed translation 
schemes to systematically check and enrich the program's representation before it moves on 
to code generation. 
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